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Lab 1g:  Horizontally Forced Pendulum & Chaotic Motion 

 
OBJECTIVE 

 

 
The objective of this lab is to study horizontally forced oscillations of a pendulum. This will be 

done trough the comparison of experimental measurements with a numerical model.  The 

comparison will be made in the time domain as well in the frequency domain through the 

computation of the FFT (Fast Fourier Transform) of the data.  Phase diagrams will be also 

compared.  This simple system shows that the nonlinear oscillations carried by the pendulum can 

eventually became chaotic, meaning that the resulting trajectories of the pendulum are random 

and cannot be computed deterministically. 

 

 

 
 

Figure 1: Experimental Setup 

 

 

EQUIPMENT 

The experimental setup includes the pendulum itself mounted over a moving carriage 

which is driven in a rectilinear oscillatory motion trough a crank-and-rod mechanism 

powered by a 12V DC motor. The crank is attached to the shaft of the motor and causes 

an oscillatory motion by connecting the crank with the carriage through a rod. Note that 

the oscillatory motion will not be a pure sine. The moment of inertia of the pendulum can 

be adjusted by shifting the mass position to change the system dynamics.  The movement 

of the pendulum is recorded with a rotary motion sensor PASCO CI-6583 which sends a 

sequence of pulses trough a data acquisition card (DBK203A) and is then converted to 
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angular position by means of the DasyLab program [1].  The carriage position is also 

recorded trough a similar mechanism but only motion frequency is inferred from this. It 

is important to note that the rotary motion sensor sends pulses, so it does not have a 

natural zero: it counts from whatever initial position is in. To properly set the zero, 

ALWAYS start the experiment from a known position, typically the pendulum at rest and 

the carriage to the foremost right position. 

 

POCEDURE 

 
Familiarization with the System 

Prior to executing the experiment, familiarize yourself with the experimental setup, the 

data acquisition system, the DasyLab worksheet and the MATLAB scripts [2].  The 

MATLAB scripts (Appendix A) will allow you to process the experimental data, to run a 

numerical model for the system and to compare both results.  

 

Experiment 

1. Measure the mass of the bronze weight and pendulum bar. Also measure the bar 

length. 

2. Unplug the encoders from the power supply (PS). Turn on the encoders’ power 

supply and set it to 5V.  Once you are sure of the voltage set up, plug in the 

encoders to the PS. (Two plugs in series in both the PS + and - terminals). 

3. You are not going to use the carriage yet, so leave the motor PS off.  

4. Open the DasyLab worksheet.  Make sure you understand what you are seeing in 

each plot window and digital meters.  Change the write data modules setup so you 

save your data to your working directory. 

5. Set the position of the mass on the pendulum to a length of 18cm to the center of 

rotation. 

6. With the pendulum bar perfectly static in vertical position launch the data 

acquisition. Move the pendulum until you have 10° angle and leave it to freely 

oscillate.  The motion of the pendulum will be damped, so the amplitude of the 

angle will decrease over time. Acquire data until you reach 5° amplitude. 

Modeling 

7. Load the data into the MATLAB environment; use the getdata script to do this.  

Identify from your experimental data your initial condition time (see Appendix A 

for some tips) and take note of your initial angle and velocity. 

8. Run the modeling script, pendsolv, with your initial conditions and with crank 

radius 0a , i.e. no movement of the carriage, and set damping coefficient 

to Nms12.0 . 

9. Plot the experimental and numerical data together using the Matlab plot functions.  

Subtract the initial time shift of your experimental data to the time data (see 

appendix A). 

10. Change the damping coefficient beta until you get the correct damping of the 

system, the previous one is a good guess.  

11. You can customize and then to save your plots using MATLAB, or you can save 

your data to a text file and load it with your preferred graphic processor. 



12. Use the spectra script to obtain the FFT of the experimental and numerical time 

evolutions.  Plot them and use the zoom and pan tools to adjust the view and 

measure the natural frequency of the pendulum using the cursor tool. 

13. Make phase diagrams.  Make conclusions about the numerical method used in 

computing the experimental data derivatives. 

14. Once you’ve finished the previous steps, execute a clean all in the command line.  

Be sure you’ve finished the previous steps; this command will erase all the 

current data in memory. 

 

Deterministic Dynamics of the System 

Through this study you will investigate the system dynamics when the pendulum 

oscillations. Do not promote very large motions, which in general correspond to a 

chaotic, non-deterministic behavior. 

 

Experiment 

1. Leave the pendulum length unchanged, i.e. 18cm. 

2. Set the crank radius to 5.7-5.8 cm (maximum amplitude).  Use the carriage rule to 

do this.  REMEMBER:  the crank radius is half the carriage stroke amplitude!!  

3. Unplug the DC motor from its PS.  Turn on the PS and set it to 4V.  Plug the DC 

motor in.  You should obtain an excitation period of 1.42±0.02 s with this voltage. 

4. Set the carriage to its rightmost position (zero initial velocity) and set the 

pendulum at rest. 

5. Begin the data acquisition. 

6. Enable the output of the motor PS and record data for about 3min so you can get 

the initial transient and following periodic oscillations. 

 

Modeling 

7. Load the experimental data into the MATLAB environment. 

8. pendsolv will solve the pendulum dynamics beginning with a zero displacement 

of the carriage. You will have to identify this zero crossing in your experimental 

data. Plot the xc variable and use the zoom, pan and cursor tools to identify a 

good zero crossing point.  Take note of the x position, the array index. 

9. Run the script qindexvalue to show angular position and velocity at this index.  

These will be your initial conditions for the model. 

10. Run the model with correct crank radius and initial conditions.  Use 

again Nms12.0  as initial guess to the damping coefficient. 

11. Plot numerical and experimental data together and change the damping coefficient 

until you get the best results. 

12. Find the FFT using spectra.  Can you identify the peaks in this spectrum?  Are 

they what you expected? 

13. Make the phase diagrams. 

14. Once you finish, perform a clean all at the command line. 

 

Repeat the steps 1-13 but this time using cma 3.22.2  , cmL 18 , VV 6  (period 

about 0.87 sec).  This time you will see larger oscillations when compared with the 

previous case so nonlinear effects became important and you will see that in the spectrum 



of the data there appear more peaks than in the previous small amplitude, linear case.  

This time the damping coefficient is going to be smaller, about Nms012.0 . 

 

Transition to Chaotic Behavior 

This last series of comparisons will show you a very interesting characteristic of this 

particular system: the transition to a chaotic dynamics. 

 

Experiment 

1. Change the pendulum length to 9cm. 

2. Use a crank radius of about 5.7-5.8cm. 

3. Put the carriage to its rightmost position and set the pendulum at rest. 

4. Set the motor PS to 5V; this should correspond to a period of about 1.14sec. 

5. Start the data acquisition and turn on the motor PS output.  Acquire data for about 

2min. 

Modeling 

6. Load the data into MATLAB. 

7. This time we are not going to compare time evolutions (but you can do it if you 

want) and we will be more interested in the FFT. Run the simulation just with 

resting initial conditions and the values of the damping coefficient between 0.012 

and 0.09.  

8. Compute the FFT of the experimental data and numerical simulation. Can you 

identify discrete picks like in the previous cases? 

9. Execute a clean all. 

 

Perform steps 1-9 but this time supply the motor with 6V (period of about 0.92sec). You 

should obtain a random motion of the pendulum in which it spins completely around its 

axis.  If the motion does not appear to be chaotic, stop the experiment and repeat steps 3-

5 until the motion is chaotic.  Remember, this should be a chaotic behavior, so every time 

you restart the experiment, you obtain a different time evolution. 

 

What happens to the angle time evolution computed numerically if you slightly change 

the initial conditions? (say you change the initial angle from 0 degrees to 0.1 degrees). 

 

Note:  In this case, since the motion of the pendulum is random, we do not compare the 

angle time evolution.  So in these cases the FFT of the time evolution is a very good way 

of comparing results since in the FFT you have all the dynamic information. 

 

 

PreLab questions: 

If a pendulum system has small oscillations, (i.e. you can consider a linear approximation 

of the equations developed in the Appendix B), what frequencies do you expect to 

observe in the FFT? 
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Appendix A:  First MATLAB Steps and Tips.  Pendulum Scripts. 
 

Introduction 
Matlab is a commercial "Matrix Laboratory" package which operates as an interactive 

programming environment.  Matlab is well adapted to numerical experiments since the 

underlying algorithms for Matlab's built-in functions and supplied m-files are based on the 

standard libraries LINPACK and EISPACK.  Matlab program and script files always have 

filenames ending with ".m". The programming language is exceptionally straightforward 

since almost every data object is assumed to be an array. Graphical output is available to 

supplement numerical results. 

 

Matlab is very well documented program.  There are several sources from which you can 

obtain help and get started 

a. At the command prompt type “help + command_name”, and you will obtain 

information about “command_name”.  You can use the help command for the 

scripts of this lab. 

b. Pressing “F1” will cause the Matlab documentation to appear. You can navigate 

the help tree in “Contents”, look for key-words in “index” or take a look to 

several demo scripts in “Demos”. 

c. On the internet there are plenty of websites dedicated to explain Matlab use, from 

basics tutorials to more specific applications such a control, signal processing, 

neural networks and fuzzy logic, finite elements, image processing, etc. 

 

Running Matlab 
When you run Matlab for the first time, a big window will appear separated in three regions, as 

shown in Figure 1.  The upper left section is a small window containing the “Current 

Directory” and “Workspace” tab. In the Current Directory tab you can change your working 

directory, while in Workspace tab you can see the current variables that you created and available 

to work. 

a. The “Command History” window shows you the history of all the commands that you 

executed in at the prompt. 

b. The “Command window” is where you execute commands and through which you have 

most of the interaction with the environment. 

 



 
 

 

 

We are not going to explain so much about Matlab use and we will limit ourselves to the basics 

we need to run the pendulum experiment lab, but we encourage you to learn this powerful 

development and test platform. 

 

Using the command line 
The command line, or prompt, appears in Matlab as the window labeled “Command window”.  In 

this window you will see a “>>” symbol, indicating that the program is waiting for you to 

introduce commands. 

 

For this lab we are going to use the following scripts
1
: 

1. getdata 

2. pendsolv 

3. qindexvalue 

4. mphasediag 

5. spectra 
 

To obtain help about this script just type at the command line help followed by the script name, 

eg: >> help getdata. 

 

                                                 
1
 Scripts are small or big pieces of code written in Matlab language.  Usually they consist of a sequence of 

commands that, instead of executing them one by one at the command line, you put them all together in a 

single file and then you execute this file, making your work easier. 
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Figure 1:  Matlab development environment 



You can see the contents of these scripts just typing edit followed by the script name. A text 

editor will open and you will be able to edit the script.  Is not necessary, but try to look at the lab 

scripts and see if you understand them. 

 

In the following, a brief explanation of how to call these scripts is given.  For all the scripts, the 

quantities in brackets are return values and quantities in parenthesis are inputs.  The use of a 

semicolon at the end suppresses the display of returned values in the command window; recall 

that these quantities can be vectors of 10000 elements in our lab and you will not want to see 

them.  Immediately after executing the script, you will see the return values at the workspace. 

 

getdata: 

With this script you load and obtain the derivatives of the data previously acquired with 

DasyLab. 

You will call it at the command line as: 

 
>> [pt p dp p2 dp2 p3 dp3 txc xc]=getdata('H:\Data\alumns\run4\’); 

 

In this example you tell to getdata that run4 is the directory where you saved your data with 

Dasylab.   

IMPORTANT:  getdata will try to read pend.ASC and carriage.ASC files from the path you 

supply.  These file names are set in the DasyLab worksheet, don’t change these names!!!. 

 

The returned values are: 

 pt: time instances. 

 p: angle at the corresponding time instances. 

 dp: first order derivative (forward difference).  
dt

pp
dp nn 

 1  

 p2: index rearrangement in p.  When combined with dp2, this provides a second order 

approximation of the derivative for phase diagrams. 

 dp2: second order derivative (centered difference). 
dt

pp
dp nn

2
2 11  
  

 p3: angle at intermediate time instances.  When used with dp3 (same as dp), this provides 

a second order approximation of the derivative for phase diagrams.  
2

3 1

2/1

nn
n

pp
pp


 

  

 dp3: same as dp. 

 

 

pendsolv: 

This is the solver that you will use to obtain a numerical solution of the pendulum system.  The 

governing equations are described in Appendix B.  These are solved trough a fourth-order Runge-

Kutta of fixed step size. The input parameters for this solver are the pendulum masses and lengths 

(see Appendix B for the definition of these quantities), the crank-and-rod parameters and the 

numerical solver parameters such as final time, time step and initial conditions. 

 

You will call it at the command line as: 
>> [tt xx dxx fo Last]=pendsolv(L,l,h,d,M,m,a,b,beta,g,T,tf,dt,xini); 

 

Where the input quantities are: 

1. The model parameters(refer to Appendix B): 



a. L: mass M distance to rotation point of pendulum, [cm]. 
b. h: bar length, [cm]. 
c. l: length from pendulum rotation point to bar bottom, [cm]. 
d. d: length from pendulum rotation point to bar top, [cm]. 
e. M: mass of the bronze mass, [gr]. 
f. m: mass of the bar, [gr]. 
g. a: crank radius, [cm]. 
h. b: rod length. 
i. beta: damping factor, [Nms]. 
j. g: gravity acceleration, [m/s^2]. In MKS g=9.81 m/s^2. 
k. T: Excitation frequency, [sec]. 

 

2. Simulation parameters: 

a. tf: Final simulation time, [sec]. 
b. dt: Time step, [sec]. 
c. xini: vector of length two for angle and velocity initial 

conditions. xini(1): angle, [degrees] and xini(2): velocity, 

[degrees/sec]. 

 

The output parameters are: 

a. tt: Time instances. 
b. xx: angle at each time instance, [degrees]. 
c. dxx: velocity at each time instance, [degrees/s]. 
d. fo: natural frequency for small amplitudes, [Hz]. 
e. Last: Equivalent length. 

 

qindexvalue: 

with this simple script you will obtain angle and velocity of the experiment at a certain index 

value previously obtained trough the zero crossing identification of the carriage displacement.  

Suppose as an example that the index that you obtained was 54, then 

 
>> [angle vel]=qindexvalue(p,dp,54) 

 

will show you the angle and velocity of the experimental data at point index 54.  Note that we are 

not using semicolons to show the data output. 

 

spectra: 

This script is used to compute the FFT of a function.  If you want to compute the FFT of the 

numerical data, you execute 

 

>> [f y]=spectra( [pt p] ); 

 

And you can plot it using 

 

>> plot(f,y) 

 

The returned value in y is normalized such you can interpret it as the amplitude of the sine 

function with frequency f. 
 

Plots in Matlab 

 
Brief summary of the plot command. 



Here are summarized the most important commands to rapidly obtain a plot using Matlab.  

Basically, to make plots in Matlab, you use the plot command.  This command is relatively easy 

to use, you just have to supply it with your “x” and “y” values.  For example, imagine that you 

have the variables pt and p output from getdata.  If you want to see this data in a plot you just 

have to perform at the command line 

 

>> plot(pt,p) 

 

This command will open a window with your data plotted on it.  You can use the zoom and pan 

icons in the figure window to expand/contract your graph and move around it until you see what 

you want.  Use the insert  menu to rapidly add labels, legends, and much more.  Once you add a 

label or legend, you can edit its font by right-clicking on it and selecting font.  Figure 2 illustrates 

some of the figure window major features 

 

 

 

 

 
 

 

 

In this lab you want to compare experimental and numerical data.  You can do that plotting both 

data together.  Consider for example you have pt and p as a result of a getdata, and that you also 

have tt and xx as a result of a pendsolv.  You can plot both data performing at the command line 

 

>> plot(pt,p,tt,xx) 

 

If you want to shift the experimental data in time, say by a time shift of 2.3 sec (you will be doing 

this in this lab), you just have to perform 

 

>> plot(pt-2.3,p,tt,xx) 

 

Figure 2: Figure window 

Insert menu 

Zomm tools Pan tool Cursor tool 



Making phase diagrams. 

Phase diagrams are a very useful tool in analyzing a dynamic system.  They consist in 

two dimensional graphs made plotting a certain variable versus another variable for the 

same time.  For the pendulum, the obvious and only choice is to plot angular velocity 

versus angle.   

 

For the numerical phase diagram you just have to execute 

 

>> plot(xx,dxx)  

 

Make another plot for the experimental diagram.  In this case you can choose between 

several derivatives 

 

>> plot(p,dp) 

>> plot(p2,dp2) 

>> plot(p3,dp3) 
 

Using the cursor to identify the zero crossing of the carriage. 
In this lab you will have to identify the zero crossing of the carriage displacement to model the 

correct phase in your model.  In order to do this you will make use of the Matlab cursor.  You can 

use the cursor tool through the cursor button in the Matlab figure window. 

 

When you press the cursor button, your mouse cursor will change into a sight like cursor.  With 

it, you can pick anywhere in the line plot. A square dot with a coordinate box indicating data 

position will appear. You can move this square with the arrows keys, see figure 3 below. 

 

The displacement of the carriage is in the variable xc.  You should plot it typing 

 

>> plot(xc) 

 

 



 
Figure 3: Cursor 
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Appendix B:  Pendulum Equations of Motion and Modeling 

 

Pendulum Motion 
In this appendix we will derive the equations of motion for the pendulum system.  Figure 1 shows 

a scheme of the system.  It consists of a thin rod of mass m  with its top attached to a moving cart 

and a mass M  of adjustable position on the rod.  The position of the cart will be described by the 

x coordinate and the rotation of the pendulum from its equilibrium position will be denoted by 

 . 

 

 

 

 
 

 

 

Figure 2 shows a detail of the rod and mass.  This figure defines the lengths and geometry of the 

model. 



M 

m 

x 

Figure 1: Scheme of a pendulum over a horizontal moving cart. 



 
 

 

Since the point to which the pendulum is fixed is moving with the cart, it is easiest to 

derive the equations of motion for a non-inertial frame of reference in which the 

rotational axis of the pendulum remains fixed.  Let us denote )(txx   as the function 

describing the motion of the cart.  Then the pendulum will be under the influence of a 

non-inertial force of magnitude ixmMF ˆ)(   , applied on the center of mass of the 

pendulum, where î is the unit vector in the x  axis direction. 

 

The center of mass of the pendulum can easily be obtained: 

 

mM

dlmM
SCM






2/)(
 

 

The conservation of momentum states that torque with respect to certain point will induce 

a change in the angular momentum calculated with respect the same point.  Here, the best 

choice for this point is the rotation axis of the pendulum.  Then, the conservation of 

momentum is 

T
dt

dL
  

 

In our case, since the motion of the pendulum is restricted to a plane, this equation 

becomes a scalar relationship and the angular momentum is simply related to the angular 

velocity   by  IL , where the moment of inertia I is simply a scalar quantity. 

 

This moment of inertia can easily be calculated as the sum of the moment of inertia of the 

bar and the moment of inertia of the mass. The moment of inertia of the bar with respect 

to the axis of the pendulum can be calculated using the parallel axis theorem. 

d l

L 
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h 

Figure 2:  Detail of the pendulum road. 



 

These procedures give as result for the angular moment of inertia of the bar 

)(
3

33 dl
h

m
Ib   

2MLII b   

 

Now, the total torque applied to the system is the sum of three contributions, due to 

gravity force, the non-inertial force and the friction force.  The first two forces are 

applied to the center of mass of the system.  For the friction forces it will be assumed that 

friction torque is proportional to the angular velocity.  Then, the total torque is 

 

   CMCM SxmMSmMgT )cos()()sin()(  

 

Putting all together and rearranging terms the equations of motion for the pendulum 

result in 
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In this equation *

0 / Lg  is the natural frequency, 
CMSMm

I
L

)(

*


 is the 

equivalent length (which is the length of a point mass pendulum with exactly the same 

dynamics as this pendulum), and 
I


 ˆ . 

Then, once the motion of the cart is imposed, it is possible to solve for the angular motion 

provided the adequate initial conditions are given. 

 

 

Cart Motion 
In the current laboratory the horizontal oscillatory motion of the cart is imposed through a crank-

and-rod mechanism.  This mechanism is depicted in Figure 3. 

 

 
Figure 3: Crank-and-rod Mechanism 

 

b  is the rod length and a  is the crank radius.  Using geometrical relations it is possible to arrive 

at the expression of the horizontal displacement in terms of the crank angle.  When the rotary 

angular velocity   of the motor is constant the equation of the horizontal displacement is 
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It is instructive to realize that when the relation 
b

a  is small, this relation can be separated into 

powers of 
b

a  and the higher order terms can be neglected.  This process gives 
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Then, when this crank-and-rod mechanism is used not only an oscillation of frequency   is 

present, but also a component of twice the excitation frequency.  This is observed in the 

pendulum experiment when the displacement of the pendulum is analyzed through the use of the 

Fourier transform. 

 

Small Amplitude Oscillations 
We can study the oscillations carried by the pendulum when the motion amplitude is small.  So, 

making the approximations  )sin(  and 1)cos(  , and inserting the approximation for 

small 
b

a  ratio for the cart motion, we obtain the linearized equation for the pendulum motion 
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So, knowing that the solution to an inhomogeneous differential equation like this is 

composed of the sum of a homogeneous solution and a particular solution, can you 

predict which frequency components will be present in our experiment for small 

amplitude motions? 
 

 


