
58:080 Experimental Engineering

Lab 1g: Horizontally Forced Pendulum & Chaotic Motion

OBJECTIVE

The objective of this lab is to study horizontally forced oscillations of a pendulum. This will be

done trough the comparison of experimental measurements with a numerical model. The

comparison will be made in the time domain as well in the frequency domain through the

computation of the FFT (Fast Fourier Transform) of the data. Phase diagrams will be also

compared. This simple system shows that the nonlinear oscillations carried by the pendulum can

eventually became chaotic, meaning that the resulting trajectories of the pendulum are random

and cannot be computed deterministically.

Figure 1: Experimental Setup

EQUIPMENT

The experimental setup includes the pendulum itself mounted over a moving carriage

which is driven in a rectilinear oscillatory motion trough a crank-and-rod mechanism

powered by a 12V DC motor. The crank is attached to the shaft of the motor and causes

an oscillatory motion by connecting the crank with the carriage through a rod. Note that

the oscillatory motion will not be a pure sine. The moment of inertia of the pendulum can

be adjusted by shifting the mass position to change the system dynamics. The movement

of the pendulum is recorded with a rotary motion sensor PASCO CI-6583 which sends a

sequence of pulses trough a data acquisition card (DBK203A) and is then converted to

Encoder

Pendulum

with

adjustable

mass

length

Crank-and-rod mechanism

Motor PS

Encoders PS

Carriage

angular position by means of the DasyLab program [1]. The carriage position is also

recorded trough a similar mechanism but only motion frequency is inferred from this. It

is important to note that the rotary motion sensor sends pulses, so it does not have a

natural zero: it counts from whatever initial position is in. To properly set the zero,

ALWAYS start the experiment from a known position, typically the pendulum at rest and

the carriage to the foremost right position.

POCEDURE

Familiarization with the System

Prior to executing the experiment, familiarize yourself with the experimental setup, the

data acquisition system, the DasyLab worksheet and the MATLAB scripts [2]. The

MATLAB scripts (Appendix A) will allow you to process the experimental data, to run a

numerical model for the system and to compare both results.

Experiment

1. Measure the mass of the bronze weight and pendulum bar. Also measure the bar

length.

2. Unplug the encoders from the power supply (PS). Turn on the encoders’ power

supply and set it to 5V. Once you are sure of the voltage set up, plug in the

encoders to the PS. (Two plugs in series in both the PS + and - terminals).

3. You are not going to use the carriage yet, so leave the motor PS off.

4. Open the DasyLab worksheet. Make sure you understand what you are seeing in

each plot window and digital meters. Change the write data modules setup so you

save your data to your working directory.

5. Set the position of the mass on the pendulum to a length of 18cm to the center of

rotation.

6. With the pendulum bar perfectly static in vertical position launch the data

acquisition. Move the pendulum until you have 10° angle and leave it to freely

oscillate. The motion of the pendulum will be damped, so the amplitude of the

angle will decrease over time. Acquire data until you reach 5° amplitude.

Modeling

7. Load the data into the MATLAB environment; use the getdata script to do this.

Identify from your experimental data your initial condition time (see Appendix A

for some tips) and take note of your initial angle and velocity.

8. Run the modeling script, pendsolv, with your initial conditions and with crank

radius 0a , i.e. no movement of the carriage, and set damping coefficient

to Nms12.0 .

9. Plot the experimental and numerical data together using the Matlab plot functions.

Subtract the initial time shift of your experimental data to the time data (see

appendix A).

10. Change the damping coefficient beta until you get the correct damping of the

system, the previous one is a good guess.

11. You can customize and then to save your plots using MATLAB, or you can save

your data to a text file and load it with your preferred graphic processor.

12. Use the spectra script to obtain the FFT of the experimental and numerical time

evolutions. Plot them and use the zoom and pan tools to adjust the view and

measure the natural frequency of the pendulum using the cursor tool.

13. Make phase diagrams. Make conclusions about the numerical method used in

computing the experimental data derivatives.

14. Once you’ve finished the previous steps, execute a clean all in the command line.

Be sure you’ve finished the previous steps; this command will erase all the

current data in memory.

Deterministic Dynamics of the System

Through this study you will investigate the system dynamics when the pendulum

oscillations. Do not promote very large motions, which in general correspond to a

chaotic, non-deterministic behavior.

Experiment

1. Leave the pendulum length unchanged, i.e. 18cm.

2. Set the crank radius to 5.7-5.8 cm (maximum amplitude). Use the carriage rule to

do this. REMEMBER: the crank radius is half the carriage stroke amplitude!!

3. Unplug the DC motor from its PS. Turn on the PS and set it to 4V. Plug the DC

motor in. You should obtain an excitation period of 1.42±0.02 s with this voltage.

4. Set the carriage to its rightmost position (zero initial velocity) and set the

pendulum at rest.

5. Begin the data acquisition.

6. Enable the output of the motor PS and record data for about 3min so you can get

the initial transient and following periodic oscillations.

Modeling

7. Load the experimental data into the MATLAB environment.

8. pendsolv will solve the pendulum dynamics beginning with a zero displacement

of the carriage. You will have to identify this zero crossing in your experimental

data. Plot the xc variable and use the zoom, pan and cursor tools to identify a

good zero crossing point. Take note of the x position, the array index.

9. Run the script qindexvalue to show angular position and velocity at this index.

These will be your initial conditions for the model.

10. Run the model with correct crank radius and initial conditions. Use

again Nms12.0 as initial guess to the damping coefficient.

11. Plot numerical and experimental data together and change the damping coefficient

until you get the best results.

12. Find the FFT using spectra. Can you identify the peaks in this spectrum? Are

they what you expected?

13. Make the phase diagrams.

14. Once you finish, perform a clean all at the command line.

Repeat the steps 1-13 but this time using cma 3.22.2  , cmL 18 , VV 6 (period

about 0.87 sec). This time you will see larger oscillations when compared with the

previous case so nonlinear effects became important and you will see that in the spectrum

of the data there appear more peaks than in the previous small amplitude, linear case.

This time the damping coefficient is going to be smaller, about Nms012.0 .

Transition to Chaotic Behavior

This last series of comparisons will show you a very interesting characteristic of this

particular system: the transition to a chaotic dynamics.

Experiment

1. Change the pendulum length to 9cm.

2. Use a crank radius of about 5.7-5.8cm.

3. Put the carriage to its rightmost position and set the pendulum at rest.

4. Set the motor PS to 5V; this should correspond to a period of about 1.14sec.

5. Start the data acquisition and turn on the motor PS output. Acquire data for about

2min.

Modeling

6. Load the data into MATLAB.

7. This time we are not going to compare time evolutions (but you can do it if you

want) and we will be more interested in the FFT. Run the simulation just with

resting initial conditions and the values of the damping coefficient between 0.012

and 0.09.

8. Compute the FFT of the experimental data and numerical simulation. Can you

identify discrete picks like in the previous cases?

9. Execute a clean all.

Perform steps 1-9 but this time supply the motor with 6V (period of about 0.92sec). You

should obtain a random motion of the pendulum in which it spins completely around its

axis. If the motion does not appear to be chaotic, stop the experiment and repeat steps 3-

5 until the motion is chaotic. Remember, this should be a chaotic behavior, so every time

you restart the experiment, you obtain a different time evolution.

What happens to the angle time evolution computed numerically if you slightly change

the initial conditions? (say you change the initial angle from 0 degrees to 0.1 degrees).

Note: In this case, since the motion of the pendulum is random, we do not compare the

angle time evolution. So in these cases the FFT of the time evolution is a very good way

of comparing results since in the FFT you have all the dynamic information.

PreLab questions:

If a pendulum system has small oscillations, (i.e. you can consider a linear approximation

of the equations developed in the Appendix B), what frequencies do you expect to

observe in the FFT?

REFERENCES

1. DasyLab V-8.00.04. Nov 3 2004.

2. MATALB The Language of Technical Computing V-7.3.0.267 (R2006b).

58:080 Experimental Engineering

Lab 1g

Appendix A: First MATLAB Steps and Tips. Pendulum Scripts.

Introduction
Matlab is a commercial "Matrix Laboratory" package which operates as an interactive

programming environment. Matlab is well adapted to numerical experiments since the

underlying algorithms for Matlab's built-in functions and supplied m-files are based on the

standard libraries LINPACK and EISPACK. Matlab program and script files always have

filenames ending with ".m". The programming language is exceptionally straightforward

since almost every data object is assumed to be an array. Graphical output is available to

supplement numerical results.

Matlab is very well documented program. There are several sources from which you can

obtain help and get started

a. At the command prompt type “help + command_name”, and you will obtain

information about “command_name”. You can use the help command for the

scripts of this lab.

b. Pressing “F1” will cause the Matlab documentation to appear. You can navigate

the help tree in “Contents”, look for key-words in “index” or take a look to

several demo scripts in “Demos”.

c. On the internet there are plenty of websites dedicated to explain Matlab use, from

basics tutorials to more specific applications such a control, signal processing,

neural networks and fuzzy logic, finite elements, image processing, etc.

Running Matlab
When you run Matlab for the first time, a big window will appear separated in three regions, as

shown in Figure 1. The upper left section is a small window containing the “Current

Directory” and “Workspace” tab. In the Current Directory tab you can change your working

directory, while in Workspace tab you can see the current variables that you created and available

to work.

a. The “Command History” window shows you the history of all the commands that you

executed in at the prompt.

b. The “Command window” is where you execute commands and through which you have

most of the interaction with the environment.

We are not going to explain so much about Matlab use and we will limit ourselves to the basics

we need to run the pendulum experiment lab, but we encourage you to learn this powerful

development and test platform.

Using the command line
The command line, or prompt, appears in Matlab as the window labeled “Command window”. In

this window you will see a “>>” symbol, indicating that the program is waiting for you to

introduce commands.

For this lab we are going to use the following scripts
1
:

1. getdata

2. pendsolv

3. qindexvalue

4. mphasediag

5. spectra

To obtain help about this script just type at the command line help followed by the script name,

eg: >> help getdata.

1
 Scripts are small or big pieces of code written in Matlab language. Usually they consist of a sequence of

commands that, instead of executing them one by one at the command line, you put them all together in a

single file and then you execute this file, making your work easier.

Current Directory tab

Workspace tab

Command history

Prompt

Figure 1: Matlab development environment

You can see the contents of these scripts just typing edit followed by the script name. A text

editor will open and you will be able to edit the script. Is not necessary, but try to look at the lab

scripts and see if you understand them.

In the following, a brief explanation of how to call these scripts is given. For all the scripts, the

quantities in brackets are return values and quantities in parenthesis are inputs. The use of a

semicolon at the end suppresses the display of returned values in the command window; recall

that these quantities can be vectors of 10000 elements in our lab and you will not want to see

them. Immediately after executing the script, you will see the return values at the workspace.

getdata:

With this script you load and obtain the derivatives of the data previously acquired with

DasyLab.

You will call it at the command line as:

>> [pt p dp p2 dp2 p3 dp3 txc xc]=getdata('H:\Data\alumns\run4\’);

In this example you tell to getdata that run4 is the directory where you saved your data with

Dasylab.

IMPORTANT: getdata will try to read pend.ASC and carriage.ASC files from the path you

supply. These file names are set in the DasyLab worksheet, don’t change these names!!!.

The returned values are:

 pt: time instances.

 p: angle at the corresponding time instances.

 dp: first order derivative (forward difference).
dt

pp
dp nn 

 1

 p2: index rearrangement in p. When combined with dp2, this provides a second order

approximation of the derivative for phase diagrams.

 dp2: second order derivative (centered difference).
dt

pp
dp nn

2
2 11  


 p3: angle at intermediate time instances. When used with dp3 (same as dp), this provides

a second order approximation of the derivative for phase diagrams.
2

3 1

2/1

nn
n

pp
pp


 



 dp3: same as dp.

pendsolv:

This is the solver that you will use to obtain a numerical solution of the pendulum system. The

governing equations are described in Appendix B. These are solved trough a fourth-order Runge-

Kutta of fixed step size. The input parameters for this solver are the pendulum masses and lengths

(see Appendix B for the definition of these quantities), the crank-and-rod parameters and the

numerical solver parameters such as final time, time step and initial conditions.

You will call it at the command line as:
>> [tt xx dxx fo Last]=pendsolv(L,l,h,d,M,m,a,b,beta,g,T,tf,dt,xini);

Where the input quantities are:

1. The model parameters(refer to Appendix B):

a. L: mass M distance to rotation point of pendulum, [cm].
b. h: bar length, [cm].
c. l: length from pendulum rotation point to bar bottom, [cm].
d. d: length from pendulum rotation point to bar top, [cm].
e. M: mass of the bronze mass, [gr].
f. m: mass of the bar, [gr].
g. a: crank radius, [cm].
h. b: rod length.
i. beta: damping factor, [Nms].
j. g: gravity acceleration, [m/s^2]. In MKS g=9.81 m/s^2.
k. T: Excitation frequency, [sec].

2. Simulation parameters:

a. tf: Final simulation time, [sec].
b. dt: Time step, [sec].
c. xini: vector of length two for angle and velocity initial

conditions. xini(1): angle, [degrees] and xini(2): velocity,

[degrees/sec].

The output parameters are:

a. tt: Time instances.
b. xx: angle at each time instance, [degrees].
c. dxx: velocity at each time instance, [degrees/s].
d. fo: natural frequency for small amplitudes, [Hz].
e. Last: Equivalent length.

qindexvalue:

with this simple script you will obtain angle and velocity of the experiment at a certain index

value previously obtained trough the zero crossing identification of the carriage displacement.

Suppose as an example that the index that you obtained was 54, then

>> [angle vel]=qindexvalue(p,dp,54)

will show you the angle and velocity of the experimental data at point index 54. Note that we are

not using semicolons to show the data output.

spectra:

This script is used to compute the FFT of a function. If you want to compute the FFT of the

numerical data, you execute

>> [f y]=spectra([pt p]);

And you can plot it using

>> plot(f,y)

The returned value in y is normalized such you can interpret it as the amplitude of the sine

function with frequency f.

Plots in Matlab

Brief summary of the plot command.

Here are summarized the most important commands to rapidly obtain a plot using Matlab.

Basically, to make plots in Matlab, you use the plot command. This command is relatively easy

to use, you just have to supply it with your “x” and “y” values. For example, imagine that you

have the variables pt and p output from getdata. If you want to see this data in a plot you just

have to perform at the command line

>> plot(pt,p)

This command will open a window with your data plotted on it. You can use the zoom and pan

icons in the figure window to expand/contract your graph and move around it until you see what

you want. Use the insert menu to rapidly add labels, legends, and much more. Once you add a

label or legend, you can edit its font by right-clicking on it and selecting font. Figure 2 illustrates

some of the figure window major features

In this lab you want to compare experimental and numerical data. You can do that plotting both

data together. Consider for example you have pt and p as a result of a getdata, and that you also

have tt and xx as a result of a pendsolv. You can plot both data performing at the command line

>> plot(pt,p,tt,xx)

If you want to shift the experimental data in time, say by a time shift of 2.3 sec (you will be doing

this in this lab), you just have to perform

>> plot(pt-2.3,p,tt,xx)

Figure 2: Figure window

Insert menu

Zomm tools Pan tool Cursor tool

Making phase diagrams.

Phase diagrams are a very useful tool in analyzing a dynamic system. They consist in

two dimensional graphs made plotting a certain variable versus another variable for the

same time. For the pendulum, the obvious and only choice is to plot angular velocity

versus angle.

For the numerical phase diagram you just have to execute

>> plot(xx,dxx)

Make another plot for the experimental diagram. In this case you can choose between

several derivatives

>> plot(p,dp)

>> plot(p2,dp2)

>> plot(p3,dp3)

Using the cursor to identify the zero crossing of the carriage.
In this lab you will have to identify the zero crossing of the carriage displacement to model the

correct phase in your model. In order to do this you will make use of the Matlab cursor. You can

use the cursor tool through the cursor button in the Matlab figure window.

When you press the cursor button, your mouse cursor will change into a sight like cursor. With

it, you can pick anywhere in the line plot. A square dot with a coordinate box indicating data

position will appear. You can move this square with the arrows keys, see figure 3 below.

The displacement of the carriage is in the variable xc. You should plot it typing

>> plot(xc)

Figure 3: Cursor

58:080 Experimental Engineering

Cursor tool

Coordinate box

Lab1g

Appendix B: Pendulum Equations of Motion and Modeling

Pendulum Motion
In this appendix we will derive the equations of motion for the pendulum system. Figure 1 shows

a scheme of the system. It consists of a thin rod of mass m with its top attached to a moving cart

and a mass M of adjustable position on the rod. The position of the cart will be described by the

x coordinate and the rotation of the pendulum from its equilibrium position will be denoted by

 .

Figure 2 shows a detail of the rod and mass. This figure defines the lengths and geometry of the

model.



M

m

x

Figure 1: Scheme of a pendulum over a horizontal moving cart.

Since the point to which the pendulum is fixed is moving with the cart, it is easiest to

derive the equations of motion for a non-inertial frame of reference in which the

rotational axis of the pendulum remains fixed. Let us denote)(txx  as the function

describing the motion of the cart. Then the pendulum will be under the influence of a

non-inertial force of magnitude ixmMF ˆ)(  , applied on the center of mass of the

pendulum, where î is the unit vector in the x axis direction.

The center of mass of the pendulum can easily be obtained:

mM

dlmM
SCM






2/)(

The conservation of momentum states that torque with respect to certain point will induce

a change in the angular momentum calculated with respect the same point. Here, the best

choice for this point is the rotation axis of the pendulum. Then, the conservation of

momentum is

T
dt

dL


In our case, since the motion of the pendulum is restricted to a plane, this equation

becomes a scalar relationship and the angular momentum is simply related to the angular

velocity  by  IL , where the moment of inertia I is simply a scalar quantity.

This moment of inertia can easily be calculated as the sum of the moment of inertia of the

bar and the moment of inertia of the mass. The moment of inertia of the bar with respect

to the axis of the pendulum can be calculated using the parallel axis theorem.

d l

L

L

h

Figure 2: Detail of the pendulum road.

These procedures give as result for the angular moment of inertia of the bar

)(
3

33 dl
h

m
Ib 

2MLII b 

Now, the total torque applied to the system is the sum of three contributions, due to

gravity force, the non-inertial force and the friction force. The first two forces are

applied to the center of mass of the system. For the friction forces it will be assumed that

friction torque is proportional to the angular velocity. Then, the total torque is

   CMCM SxmMSmMgT)cos()()sin()(

Putting all together and rearranging terms the equations of motion for the pendulum

result in

)cos(
1ˆ)sin(

*

2

0  x
L

 

In this equation *

0 / Lg is the natural frequency,
CMSMm

I
L

)(

*


 is the

equivalent length (which is the length of a point mass pendulum with exactly the same

dynamics as this pendulum), and
I


 ˆ .

Then, once the motion of the cart is imposed, it is possible to solve for the angular motion

provided the adequate initial conditions are given.

Cart Motion
In the current laboratory the horizontal oscillatory motion of the cart is imposed through a crank-

and-rod mechanism. This mechanism is depicted in Figure 3.

Figure 3: Crank-and-rod Mechanism

b is the rod length and a is the crank radius. Using geometrical relations it is possible to arrive

at the expression of the horizontal displacement in terms of the crank angle. When the rotary

angular velocity  of the motor is constant the equation of the horizontal displacement is

b

a
x



















































2

2

2

1)(cos1)sin()(
b

a

a

b
t

b

a

a

b
tatx

It is instructive to realize that when the relation
b

a is small, this relation can be separated into

powers of
b

a and the higher order terms can be neglected. This process gives

 )2cos(1
4

1
)sin(t

b

a
t

a

x











Then, when this crank-and-rod mechanism is used not only an oscillation of frequency  is

present, but also a component of twice the excitation frequency. This is observed in the

pendulum experiment when the displacement of the pendulum is analyzed through the use of the

Fourier transform.

Small Amplitude Oscillations
We can study the oscillations carried by the pendulum when the motion amplitude is small. So,

making the approximations  )sin(and 1)cos( , and inserting the approximation for

small
b

a ratio for the cart motion, we obtain the linearized equation for the pendulum motion









)2cos()sin(ˆ 2

*

2

0 t
b

a
t

L

a
 

So, knowing that the solution to an inhomogeneous differential equation like this is

composed of the sum of a homogeneous solution and a particular solution, can you

predict which frequency components will be present in our experiment for small

amplitude motions?

